已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)椭圆左,右焦点分别为,过的直线与椭圆交于不同的两点,则△的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
如图是单位圆上的点,分别是圆与轴的两交点,为正三角形. (1)若点坐标为,求的值; (2)若,四边形的周长为,试将表示成的函数,并求出的最大值.
已知在等比数列中,,若数列满足:,数列满足:,且数列的前项和为. (1)求数列的通项公式;(2)求数列的通项公式; (3) 求.
在△中,∠,∠,∠的对边分别是,且 . (1)求∠的大小;(2)若,,求和的值.
已知函数. (1)求的最小正周期; (2)求在区间上的最大值和最小值.
已知, 求 和的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号