(2009陕西卷文)(本小题满分12分)
椐统计,某食品企业一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1
(Ⅰ) 求该企业在一个月内共被消费者投诉不超过1次的概率;
(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率。
(本小题满分12分)甲、乙两名射击运动员参加射击选拔训练,在相同的条件下,两人5次训练的成绩如下表(单位:环)
次数 |
1 |
2 |
3 |
4 |
5 |
甲 |
6.5 |
10.2 |
10.5 |
8.6 |
6.8 |
乙 |
10.0 |
9.5 |
9.8 |
9.5 |
7.0 |
(1)请画出茎叶图,从稳定性考虑,选派谁更好呢?说明理由(不用计算)。若从甲、乙两人5次成绩中各随机抽取一次,求抽取的成绩至少有一个低于9.0环的概率;
(2)若从甲、乙两人5次成绩中各随机抽取二次,设抽到10.0环以上(包括10.0环)的次数为,求随机变量
的分布列和期望;
(本小题满分12分)已知数列的首项
,前
项和为
,且
(1)求数列的通项公式;
(2)设函数,
是函数
的导函数,令
,求数列
的通项公式,并研究其单调性。
(本小题满分12分)已知△ABC中,三个内角A,B,C的对边分别为, 若△ABC的外接圆的半径为
,且
(I)求∠C;
(Ⅱ)求△ABC的面积S的最大值.
已知函数
(Ⅰ)求函数的最小正周期和图象的对称轴方程
(Ⅱ)求函数在区间
上的值域。
已知函数图象上一个最高点为P(2,2),由这个最高点到相邻最低点间的曲线与X轴相交于点Q(6,0)。
(1)求这个函数的解析式;
(2)写出这个函数的单调区间。