游客
题文

在一个袋子中放9个白球,1个红球,摇匀后随机摸球:
(1)  每次摸出球后记下球的颜色然后放回袋中;
(2)  每次摸出球后不放回袋中.
在两种情况下分别做10次试验,求每种情况下第4次摸到红球的频率.两个频率相差得远吗?两个事件的概率一样吗?第4次摸到红球的频率与第1次摸到红球的频率相差得远吗?请说明原因.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

在三棱柱 ABC- A 1 B 1 C 1中, ABACB 1 C⊥平面 ABCEF分别是 ACB 1 C的中点.

(1)求证: EF∥平面 AB 1 C 1

(2)求证:平面 AB 1 C⊥平面 ABB 1

已知函数 f ( x ) = x 3 + k ln x ( k R ) f ' ( x ) f ( x ) 的导函数.

(Ⅰ)当 k = 6 时,

(i)求曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线方程;

(ii)求函数 g ( x ) = f ( x ) - f ' ( x ) + 9 x 的单调区间和极值;

(Ⅱ)当 k - 3 时,求证:对任意的 x 1 , x 2 [ 1 , + ) ,且 x 1 > x 2 ,有 f ' x 1 + f ' x 2 2 > f x 1 - f x 2 x 1 - x 2

已知 a n 为等差数列, b n 为等比数列, a 1 = b 1 = 1 , a 5 = 5 a 4 - a 3 , b 5 = 4 b 4 - b 3

(Ⅰ)求 a n b n 的通项公式;

(Ⅱ)记 a n 的前 n 项和为 S n ,求证: S n S n + 2 < S n + 1 2 n N *

(Ⅲ)对任意的正整数 n ,设 c n = 3 a n - 2 b n a n a n + 2 , n 为奇数 , a n - 1 b n + 1 , n 为偶数 . 求数列 c n 的前 2 n 项和.

已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的一个顶点为 A ( 0 , - 3 ) ,右焦点为 F ,且 | OA | = | OF | ,其中 O 为原点.

(Ⅰ)求椭圆方程;

(Ⅱ)已知点 C 满足 3 OC = OF ,点 B 在椭圆上( B 异于椭圆的顶点),直线 AB 与以 C 为圆心的圆相切于点 P ,且 P 为线段 AB 的中点.求直线 AB 的方程.

如图,在三棱柱 ABC - A 1 B 1 C 1 中, C C 1 平面 ABC , AC BC , AC = BC = 2 C C 1 = 3 ,点 D ,  E 分别在棱 A A 1 和棱 C C 1 上,且 AD = 1  CE = 2 ,  M 为棱 A 1 B 1 的中点.

(Ⅰ)求证: C 1 M B 1 D

(Ⅱ)求二面角 B - B 1 E - D 的正弦值;

(Ⅲ)求直线 AB 与平面 D B 1 E 所成角的正弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号