三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,
∠BAC=90°,A1A⊥平面ABC,A1A=,AB=
,AC=2,A1C1=1,
=
.
(1)证明:平面A1AD⊥平面BCC1B1;
(2)求二面角A—CC1—B的余弦值.
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件|F2A|、|F2B|、|F2C|成等差数列(1)求该弦椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围
如图:在面积为1的DPMN中,tanÐPMN=,tanÐMNP=-2,试建立适当的坐标系,求以M、N为焦点且过点P的椭圆方程。
已知双曲线C 2x2-y2=2与点P(1,2)
(1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点
(2)若Q(1,1),试判断以Q为中点的弦是否存在
已知曲线C:与直线L:
仅有一个公共点,求m的范围.
设椭圆的中心是坐标原点,长轴在轴上,离心率
,已知点
到这个椭圆上的最远距离是
,求这个椭圆的方程.