设三条直线l1:x+y-1=0,l2:kx-2y+3=0,l3:x-(k+1)y-5="0." 若这三条直线交于一点,求k的值.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(km/h)是车流密度x(辆/千米)的函数.当桥上的车流密度达到200辆/km时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/km时,车流速度为60km/h,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出其最大值.(精确到1辆/小时)
某公司为一家制冷设备厂设计生产某种型号的长方形薄板,其周长为4m.这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB>AD)为长方形薄板,沿AC折叠后AB′交DC于点P.当△ADP的面积最大时最节能,凹多边形ACB′PD的面积最大时制冷效果最好.
(1)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;
(2)若要求最节能,应怎样设计薄板的长和宽?
(3)若要求制冷效果最好,应怎样设计薄板的长和宽?
要制作一个如图的框架(单位:m),要求所围成的总面积为19.5(m2),其中ABCD是一个矩形,EFCD是一个等腰梯形,梯形高h=AB,tan∠FED=
,设AB=xm,BC=ym.
(1)求y关于x的表达式;
(2)如何设计x、y的长度,才能使所用材料最少?
某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y(万元)随医疗总费用x(万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.
(1)请你分析该单位能否采用函数模型y=0.05(x2+4x+8)作为报销方案;
(2)若该单位决定采用函数模型y=x-2lnx+a(a为常数)作为报销方案,请你确定整数a的值.(参考数据:ln2≈0.69,ln10≈2.3)
如图,两个工厂A、B相距2km,点O为AB的中点,要在以O为圆心,2km为半径的圆弧MN上的某一点P处建一幢办公楼,其中MA⊥AB,NB⊥AB.据测算此办公楼受工厂A的“噪音影响度”与距离AP的平方成反比,比例系数为1;办公楼受工厂B的“噪音影响度”与距离BP的平方也成反比,比例系数为4,办公楼与A、B两厂的“总噪音影响度”y是A、B两厂“噪音影响度”的和,设AP为xkm.
(1)求“总噪音影响度”y关于x的函数关系式,并求出该函数的定义域;
(2)当AP为多少时,“总噪音影响度”最小?