(本小题满分12分)
已知盒子中有六张分别标有数字1、2、3、4、5、6的卡片
(Ⅰ)现从盒子中任取两张卡片,将卡片上的数字相加,求所得数字是奇数的概率;
(Ⅱ)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张标有数字为偶数的卡片则停止抽取,否则继续进行,求抽取次数的分布列.
已知的图象过点
,且函数
的图象关于
轴对称;
(1)求的值及函数
的单调区间;
(2)求函数极值.
某工厂生产一种产品,已知该产品的月产量x吨与每吨产品的价格(元)之间的关系为
,且生产
吨的成本为
(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)
已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为
,若椭圆的焦点在
轴上,求椭圆的方程.
如图,在三棱锥中,
底面
,点
,
分别在棱
上,且
(Ⅰ)求证:平面
;
(Ⅱ)当为
的中点时,求
与平面
所成的角的正弦值;
(Ⅲ)是否存在点使得二面角
为直二面角?若存在,请确定点E的位置;若不存在,请说明理由.
如图1,在平行四边形ABCD中,AB=1,BD=,∠ABD=90°,E是BD上的一个动点,现将该平行四边形沿对角线BD折成直二面角A-BD-C,如图2所示.
(1)若F、G分别是AD、BC的中点,且AB∥平面EFG,求证:CD∥平面EFG;
(2)当图1中AE+EC最小时,求图2中二面角A-EC-B的大小.