在等差数列{an}中,
(1)已知a15=33,a45=153,求a61;
(2)已知a6=10,S5=5,求a8和S8;
(3)已知前3项和为12,前3项积为48,且d>0,求a1.
在直角坐标系中,以O为极点,
轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为
,曲线
的参数方程为
,(
为参数,
)。
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数的取值范围。
已知C点在⊙O直径BE的延长线上,CA切⊙O于A 点,CD是∠ACB的平分线且交AE于点F,交AB于点D
(1)求∠ADF的度数;(2)若AB=AC,求的值.
已知函数的图像过坐标原点
,且在点
处的切线的斜率是
.
(1)求实数的值;
(2)求在区间
上的最大值;
(3)对任意给定的正实数,曲线
上是否存在两点
,使得
是以
为
直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
已知函数
(Ⅰ)求函数的最大值;
(Ⅱ)若对任意,不等式
恒成立,求实数
的取值范围;
(Ⅲ)若,求证:
.
在数列中,
,且
.
(Ⅰ) 求,猜想
的表达式,并加以证明;
(Ⅱ)设,求证:对任意的自然数
都有
.