已知点A(2,8),B(x,y
),C(x
,y
)在抛物线y
=2px上,△ABC的重心与此抛物线的焦点F重合(如图)。
(1)写出该抛物线的方程和焦点F的坐标;
(2)求线段BC中点M的坐标。
设的内角
,
,
所对的边长分别为
,
,
,且
,
.
(1)当时,求
的值;
(2)当的面积为
时,求
的值.
若函数在
上为增函数(
为常数),则称
为区间
上的“一阶比增函数”,
为
的一阶比增区间.
(1) 若是
上的“一阶比增函数”,求实数
的取值范围;
(2) 若 (
,
为常数),且
有唯一的零点,求
的“一阶比增区间”;
(3)若是
上的“一阶比增函数”,求证:
,
如图,椭圆的左焦点为
,右焦点为
,过
的直线交椭圆于
两点,
的周长为8,且
面积最大时,
为正三角形.
(1)求椭圆的方程;
(2)设动直线与椭圆
有且只有一个公共点
,且与直线
相交于点
,证明:点
在以
为直径的圆上.
已知数列(常数
),其前
项和为
(
)
(1)求数列的首项
,并判断
是否为等差数列,若是求其通项公式,不是,说明理由;
(2)令的前n项和,求证:
一个几何体是由圆柱和三棱锥
组合而成,点
、
、
在圆
的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图4所示,其中
,
,
,
.
(1)求证:;
(2)求三棱锥的体积.