.(本小题满分14分)已知直线与椭圆
相交于
两点,且
(其中
为坐标原点).(1)若椭圆的离心率为
,求椭圆的标准方程;
(2)求证:不论如何变化,椭圆恒过定点
;
(3)若直线过(2)中的定点
,且椭圆的离心率
,求原点到直线
距离的取值范围.
数列的各项均为正数,
为其前
项和,对于任意
,总有
成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列
的前
项和为
,求证:
.
如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,,E、F分别是AB、PD的中点.
(Ⅰ)求证:平面PCE 平面PCD;
(Ⅱ)求四面体PEFC的体积.
甲、乙两个盒子里各放有标号为1,2,3,4的四个大小形状完全相同的小球,从甲盒中任取一小球,记下号码后放入乙盒,再从乙盒中任取一小球,记下号码
.
(Ⅰ)求的概率;
(Ⅱ)设随机变量,求随机变量
的分布列及数学期望.
已知函数为偶函数, 且
(Ⅰ)求的值;
(Ⅱ)若为三角形
的一个内角,求满足
的
的值.
(本小题满分13分)
已知椭圆的离心率为
,椭圆短轴长为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆
相交于
、
两点. ①若线段
中点的横坐标为
,求斜率
的值;②若点
,求证:
为定值。