(1) 若是空集,求
的取值范围;
(2)若中至多有一个元素,求
的取值范围
在某次测验中,有6位同学的平均成绩为75分,用表示编号为
的同学所得成绩,且前5位同学的成绩如下:
编号![]() |
1 |
2 |
3 |
4 |
5 |
成绩![]() |
70 |
76 |
72 |
70 |
72 |
(1)求第6位同学的成绩,及这6位同学成绩的标准差
;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学的成绩在区间(68,75)中的概率.
已知y=log4(2x+3-x2).
(1)求定义域;(2)求f(x)的单调区间;(3)求y的最大值,并求取最大值时x的值.
某学校共有高一、高二、高三学生名,各年级男、女生人数如下图:
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(Ⅰ)求的值;
(Ⅱ)现用分层抽样的方法在全校抽取名学生,问应在高三年级抽取多少名?
(Ⅲ)已知,求高三年级中女生比男生多的概率.
已知集合,
(1)若;(2)若
,求实数
的取值范围.
已知函数和函数
,
(1)证明:只要,无论b取何值,函数
在定义域内不可能总为增函数;
(2)在同一函数图象上任意取不同两点,线段AB的中点为
,记直线AB的斜率为
,①对于函数
,求证:
;②对于函数
,是否具有与①同样的性质?证明你的结论.