设平面向量,若存在实数
和角
,其中
,使向量
,且
.
(1).求的关系式;
(2).若,求
的最小值,并求出此时的
值.
数列{an}中,,试证:
.
设数列{an}的前n项和为Sn,且方程x2﹣anx﹣an=0有一根为Sn﹣1,n=1,2,3,….
(Ⅰ)求a1,a2;
(Ⅱ){an}的通项公式.
用数学归纳法证明不等式:+
+
+…+
>1(n∈N*且n>1).
已知函数f(x)=x3﹣x2++
,且存在x0∈(0,
),使f(x0)=x0.
(1)证明:f(x)是R上的单调增函数;
(2)设x1=0,xn+1=f(xn);y1=,yn+1=f(yn),其中n=1,2,…,证明:xn<xn+1<x0<yn+1<yn;
(3)证明:<
.
平面内有n条直线,其中无任何两条平行,也无任何三条共点,求证:这n条直线把平面分割成(n2+n+2)块.