求下列函数的单调区间:
(本小题满分13分)
已知函数是函数
的极值点。
(I)求实数a的值,并确定实数m的取值范围,使得函数有两个零点;
(II)是否存在这样的直线,同时满足:①
是函数
的图象在点
处的切线②
与函数
的图象相切于点
,如果存在,求实数b的取值范围;不存在,请说明理由。
(本小题满分13分)
已知椭圆C:的左、右顶点的坐标分别为
,
,离心率
。
(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为,
,点P是其上的动点,
(1)当 内切圆的面积最大时,求内切圆圆心的坐标;
(2)若直线与椭圆交于
、
两点,证明直线
与直线
的交点在直线
上。
(本小题满分13分)
某公司是专门生产健身产品的企业,第一批产品上市销售40天内全部售完,该公司对第一批产品
上市后的市场销售进行调研,结果如图(1)、(2)所示.其中(1)的抛物线表示的是市场的日销售量与上市时间的关系;(2)的折线表示的是每件产品
的销售利润与上市时间的关系.
(Ⅰ)写出市场的日销售量与第一批产品A上市时间t的关系式;
(Ⅱ)第一批产品A上市后的第几天,这家公司日销售利润最大,最大利润是多少?
((本小题满分12分)
如图所示,在棱长为的正方体ABCD—A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点。
|
(Ⅰ)求证:BH//平面A1EFD1;
(Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值。(本小题满分12分)
已知某单位有50名职工,从中按系统抽样抽取10名职工,分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示。
(Ⅰ)求该样本的方差;
(Ⅱ)从这10名职工中随机抽取两名体重不轻于73公斤的职工,求体重为76公斤的职工被抽取到的概率。