已知在
时取得极值,且
.
1.试求常数a、b、c的值;
2.试判断是函数的极小值还是极大值,并说明理由.
某种食品是经过、
、
三道工序加工而成的,
、
、
工序的产品合格率分别为
、
、
.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场.
(1)正式生产前先试生产袋食品,求这2袋食品都为废品的概率;
(2)设为加工工序中产品合格的次数,求
的分布列和数学期望.
如图一,平面四边形关于直线
对称,
.把
沿
折起(如图二),使二面角
的余弦值等于
.对于图二,完成以下各小题:
(1)求两点间的距离;
(2)证明:平面
;
(3)求直线与平面
所成角的正弦值.
已知向量(
为常数且
),函数
在
上的最大值为
.
(1)求实数的值;
(2)把函数的图象向右平移
个单位,可得函数
的图象,若
在
上为增函数,求
取最大值时的单调增区间.
等比数列中,已知
.
(1)求数列的通项公式;
(2)若分别为等差数列
的第3项和第5项,试求数列
的通项公式及前
项和
.
已知函数,
(1)求函数的单调区间;
(2)在区间内存在
,使不等式
成立,求
的取值范围.