在面积为1的△PMN中,tan∠PMN=,tan∠MNP=-2,适当建立坐标系,求以M、N为焦点,且过点P的椭圆方程.
上海世博会上有一种舞台灯,外形是正六棱柱,在其每个侧面(编号分别是①②③④⑤⑥)上安装5只颜色各异的灯,每只灯正常发光的概率是0.5,若一侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换费用。
(1)求①号面需要更换的概率;
(2)求6个侧面面上恰有2个侧面需要更换的概率。
(3)写出的分布列,并求出
的数学期望。
已知ΔABC中,满足,a,b,c分别是ΔA
BC的三边。
(1)试判定ΔABC的形状,并求sinA+sinB的取值范围。
(2)若不等式对任意的a,b,c都成立,求实数k的取值范围。
已知是函数
的一个极值点,其
,
(1)求与
的关系式;
(2)求的单调区间;
(3)当时,函数
的图象上任意一点的切线斜率恒大于3
,求
取值范围
数列满足
,前n项和
(1)写出;(2)猜出
的表达式,并用数学归纳法证明
已知四棱锥的底面为直角梯形,
,
底面
,且
,
,
是
的
(Ⅰ)证明:面面
;
(Ⅱ)求与
所成的角;
(Ⅲ)求面与面
所成二面角的余弦值