在一个盒子中,放有标号分别为,
,
的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为
、
,记
.
(Ⅰ)求随机变量的最大值,并求事件“
取得最大值”的概率;
(Ⅱ)求随机变量的分布列和数学期望.
如图,是边长为
的正方形,
是矩形,平面
平面
,
为
的中点.
(1)求证://平面
;
(2)若三棱锥的体积为
,求三棱柱
的体积.
汽车是碳排放量比较大的行业之一,某地规定,从2015年开始,将对二氧化碳排放量超过130g/km的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km).
经测算得乙品牌轻型汽车二氧化碳排放量的平均值为.
(1)求表中的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性;
(2)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过的概率是多少?
已知函数
(1)求函数的最小正周期和最大值;
(2)设的三内角分别是A、B、C.若
,且
,求边
和
的值.
(本小题满分14分)已知函数,
,
;
(1)设,若
在定义域内存在极值,求
的取值范围;
(2)设是
的导函数,若
,
,
,求证:
.
(本小题满分14分)设、
是焦距为
的椭圆
的左、右顶点,曲线
上的动点
满足
,其中,
和
是分别直线
、
的斜率.
(1)求曲线的方程;
(2)直线与椭圆
只有一个公共点且交曲线
于
两点,若以线段
为直径的圆过点
,求直线
的方程.