(本小题满分12分)已知椭圆:
(
)的离心率为
,过右焦点
且斜率为1的直线交椭圆
于
两点,
为弦
的中点。
(1)求直线(
为坐标原点)的斜率
;
(2)设椭圆
上任意一点,且
,求
的最大值和最小值.
(本小题满分12分)已知直三棱柱中,△
为等腰直角三角形,∠
=
,且
=
,
、
、
分别为
、
、
的中点.
(1)求证:∥平面
;
(2)求证:⊥平面
;
(3)求三棱锥的体积.
(本小题满分12分)设为坐标原点,点
的坐标
(1)在一个盒子中,放有标号为的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为
,求|
|的最大值,并求事件“|
|取到最大值”的概率;
(2)若利用计算机随机在[,
]上先后取两个数分别记为
,
求:点在第一象限的概率.
(本小题满分12分)如图:,
.
(1)求的大小;
(2)当时,判断
的形状,并求
的值.
(本小题满分10分)
已知函数.
(1)若不等式的解集为
,求实数a的值;
(2)在(1)的条件下,若存在实数使
成立,求实数
的取值范围.