已知甲、乙、丙三种食物的维生素A、B含量及成本如下表:
|
甲 |
乙 |
丙 |
维生素A(单位/kg) |
60 |
70 |
40 |
维生素B(单位/kg) |
80 |
40 |
50 |
成本(元/kg) |
11 |
9 |
4 |
现分别用甲、乙、丙三种食物配成10kg混合食物,并使混合食物内至少含有560单位维生素A和630单位维生素B.
(Ⅰ)若混合食物中恰含580单位维生素A和660单位维生素B,求混合食物的成本为多少元?
(Ⅱ)分别用甲、乙、丙三种食物各多少kg,才能使混合食物的成本最低?最低成本为多少元?
设函数对任意实数x 、y都有
,
(1)求的值;
(2)若,求
、
、
的值;
(3)在(2)的条件下,猜想的表达式,并用数学归纳法加以证明。
设数列的前
项和为
,且
.
(1)求数列的通项公式;
(2)若数列满足
,求数列
的通项公式.
复数=
且
,
对应的点在第一象限,若复数0,z,
对应的点是正三角形的三个顶点,求实数
的值.
已知函数(
).
(1)若函数在
处取得极值,求
的值;
(2)在(1)的条件下,求证:;
(3)当时,
恒成立,求
的取值范围.
已知函数是定义在
上的奇函数.当
时,
,且图象过点
与点
.
(Ⅰ)求实数的值,并求函数
的解析式;
(Ⅱ)若关于的方程
有两个不同的实数解,请写出实数
的取值范围;
(Ⅲ)解关于的不等式
,写出解集.