甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:
甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只。
乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个。
请你根据提供的信息说明:
(Ⅰ)第2年全县鱼池的个数及全县出产的鳗鱼总数。
(Ⅱ)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?说明理由。
(Ⅲ)哪一年的规模(即总产量)最大?说明理由。
已知,
,且向量
与
不共线.
(1)若与
的夹角为
,求
·
;
(2)若向量与
互相垂直,求
的值.
在中,内角
所对的边分别是
.已知
,
,
.
(1)求的值;
(2)求的面积.
已知函数.
(1)求(x)的最小正周期和单调递增区间;
(2)求f(x)在区间上的最大值和最小值.
(本小题满分10分)选修4-4:极坐标与参数方程选讲
已知曲线的极坐标方程是
,直线
的参数方程是
(
为参数).
(Ⅰ)将曲线的极坐标方程化为直角坐标方程;
(Ⅱ)设直线与
轴的交点是
,
是曲线
上一动点,求
的最大值.
(本小题满分10分)选修4-1几何证明选讲
已知外接圆劣弧
上的点(不与点
、
重合),延长
至
,延长
交
的延长线于
.
(Ⅰ)求证:;
(Ⅱ)求证:.