有一种舞台灯,外形是正六棱柱ABCDEF—A1B1C1D1E1F1,在其每一个侧面上(不在棱上)安装5只颜色各异的彩灯,假若每只灯正常发光的概率是0.5,若一个面上至少有3只灯发光,则不需要维修,否则需要更换这个面. 假定更换一个面需100元,用ξ表示维修一次的费用.
(1)求面ABB1A1需要维修的概率;
(2)写出ξ的分布列,并求ξ的数学期望.
已知中心在原点,焦点在
轴上的椭圆
的离心率为
,椭圆上异于长轴顶点的任意点
与左右两焦点
、
构成的三角形中面积的最大值为
.
 (1)求椭圆
的标准方程;
 (2)已知点
,连接
与椭圆的另一交点记为
,若
与椭圆相切时
、
不重合,连接
与椭圆的另一交点记为
,求
的取值范围.
甲、乙两容器中分别盛有两种浓度的某种溶液
,从甲容器中取出
溶液,将其倒入乙容器中搅匀,再从乙容器中取出
溶液,将其倒入甲容器中搅匀,这称为是一次调和,已知第一次调和后,甲、乙两种溶液的浓度分别记为:
,
,第
次调和后的甲、乙两种溶液的浓度分别记为:
、
.
 (1)请用
、
分别表示
和
;
 (2)问经过多少次调和后,甲乙两容器中溶液的浓度之差小于
.
如图所示,空间中有一直角三角形
,
为直角,
,
,现以其中一直角边
为轴,按逆时针方向旋转
后,将
点所在的位置记为
,再按逆时针方向继续旋转
后,
点所在的位置记为
.
 (1)连接
,取
的中点为
,求证:面
面
;
 (2)求
与平面
所成的角的正弦值.
如图所示,某建筑工地准备建造一间两面靠墙的三角形露天仓库堆放材料,已知已有两面墙
、
的夹角为
(即
),现有可供建造第三面围墙的材料
米(两面墙的长均大于
米),为了使得仓库的面积尽可能大,记
,问当
为多少时,所建造的三角形露天仓库的面积最大,并求出最大值? 
如图,一半径为
的圆形靶内有一个半径为
的同心圆,将大圆分成两
 部分,小圆内部区域记为
环,圆环区域记为
环,某同学向该靶投掷
枚飞镖,每次
枚. 假设他每次必
 定会中靶,且投中靶内各点是随机的.
 (1)求该同学在一次投掷中获得
环的概率;
 (2)设
表示该同学在
次投掷中获得的环数,求
的分布列及数学期望.