已知,
(
)分别对应向量,
(O为原点),若向量
对应的复数为纯虚数,求
的值.
一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车A |
轿车B |
轿车C |
|
舒适型 |
100 |
150 |
z |
标准型 |
300 |
450 |
600 |
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值.
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
如图,正方体,
,E为棱
的中点.(1) 求证:
;
(2) 求证:平面
;
(3)求三棱锥的体积.
设命题实数
满足
,其中
;命题
实数
满足
,若
是
的充分不必要条件,求实数
的取值范围。
小明、小华用4张扑克牌(分别是黑桃2、黑桃4,黑桃5、梅花6)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,小明先抽,小华后抽,抽出的牌不放回,各抽一张.(1)若小明恰好抽到黑桃4, 求小华抽出的牌的牌面数字比4大的概率; (2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜,反之,则小明负,你认为这个游戏是否公平,说明你的理由.
已知x = 4是函数的一个极值点,(
,b∈R).
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)若函数有3个不同的零点,求
的取值范围.