已知点是函数
且
)的图象上一点,等比数列
的前
项和为
,数列
的首项为
,且前
项和
满足
(
).
(Ⅰ)求数列和
的通项公式;
(Ⅱ)若数列前
项和为
,问满足
的最小正整数
是多少?
已知 .
(1)当 时,求不等式 的解集;
(2)若 时不等式 成立,求 的取值范围.
在直角坐标系 中,曲线 的方程为 .以坐标原点为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 .
(1)求 的直角坐标方程;
(2)若 与 有且仅有三个公共点,求 的方程.
已知函数 .
(1)讨论 的单调性;
(2)若 存在两个极值点 ,证明: .
某工厂的某种产品成箱包装,每箱 件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取 件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为 ,且各件产品是否为不合格品相互独立.
(1)记 件产品中恰有 件不合格品的概率为 ,求 的最大值点 ;
(2)现对一箱产品检验了 件,结果恰有 件不合格品,以(1)中确定的 作为 的值.已知每件产品的检验费用为 元,若有不合格品进入用户手中,则工厂要对每件不合格品支付 元的赔偿费用.
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为 ,求 ;
(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
设椭圆 的右焦点为 ,过 的直线 与 交于 两点,点 的坐标为 .
(1)当 与 轴垂直时,求直线 的方程;
(2)设 为坐标原点,证明: .