游客
题文

若F1、F2分别为双曲线 -=1下、上焦点,O为坐标原点,P在双曲线的下支上,点M在上准线上,且满足:
(1)求此双曲线的离心率;
(2)若此双曲线过N(,2),求此双曲线的方程
(3)若过N(,2)的双曲线的虚轴端点分别B1,B2(B2x轴正半轴上),点A、B在双曲线上,且,求时,直线AB的方程.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知双曲线的右准线为,右焦点,离心率,求双曲线方程.

设点P(x,y)在椭圆上,求的最大、最小值.

已知数集具有性质;对任意的两数中至少有一个属于.
(Ⅰ)分别判断数集是否具有性质,并说明理由;
(Ⅱ)证明:,且
(Ⅲ)证明:当时,成等比数列..

设无穷等差数列{an}的前n项和为Sn.
(Ⅰ)若首项,公差,求满足的正整数k;
(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有成立

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号