若函数在区间
上有且只有一个极值点,则
的取值范围为( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图,已知矩形ABCD,PA⊥平面ABCD于A,M,N分别为AB,PC的中点
(1)求证:MN⊥AB;
(2)若平面PDC与平面ABCD所成的二面角为θ,能否确定θ,使直线MN是异面直线AB与PC的公垂线?若能确定,求出的值;若不能确定,说明理由.
某工厂在试验阶段大量生产一种零件.这种零件有A,B两项技术指标需要检测,设各项技术指标达标与否互不影响.若有且仅有一项技术指标达标的概率为5/12,至少一项技术指标达标的概率为11/12.按质量检验规定:两项技术指标都达标的零件为合格品.
(1)求一个零件经过检测为合格品的概率是多少?
(2)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少?
(3)任意依次抽取该种零件4个,设ξ表示其中合格品的个数,求Eξ与Dξ.
函数f(x)=(sinωx+cosωx)cosωx-0.5(ω>0)的最小正周期为4π,(1)求f(x)的单调递增区间;(2)在∆ABC中,角A,B,C的对边分别是a,b,c,满足(2a-c)cosB=bcosC,求角B的值,并求函数f(A)的取值范围
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分其中①6分、②2分。
设抛物线的焦点为
,过
且垂直于
轴的直线与抛物线交于
两点,已知
.
(1)求抛物线的方程;
(2)设,过点
作方向向量为
的直线与抛物线
相交于
两点,求使
为钝角时实数
的取值范围;
(3)①对给定的定点,过
作直线与抛物线
相交于
两点,问是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由。
②对,过
作直线与抛物线
相交于
两点,问是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?(只要求写出结论,不需用证明)
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。
定义:对函数,对给定的正整数
,若在其定义域内存在实数
,使得
,则称函数
为“
性质函数”。
(1)判断函数是否为“
性质函数”?说明理由;
(2)若函数为“2性质函数”,求实数
的取值范围;
(3)已知函数与
的图像有公共点,求证:
为“1性质函数”。