游客
题文

已知函数的最小正周期为,且当时,函数取最大值.
(1)求的解析式;
(2)试列表描点作出在[0,]范围内的图象.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分12分)某市去年11份曾发生流感,据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数.

(本小题满分12分)已知数列,其中是首项为1,公差为1的等差数列;是公差为的等差数列;是公差为的等差数列().
(1)若,求;(2)试写出关于的关系式,并求的取值范围;(3)续写已知数列,使得是公差为的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的 1 2 1 3 1 6 .现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率;
(II)至少有1人选择的项目属于民生工程的概率.


(2009重庆卷文)(本小题满分13分,(Ⅰ)问7分,(Ⅱ)问6分)
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为,且各株大树是否成活互不影响.求移栽的4株大树中:
(Ⅰ)至少有1株成活的概率;
(Ⅱ)两种大树各成活1株的概率.


(2009福建卷文)(本小题满分12分)
袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球
(I)试问:一共有多少种不同的结果?请列出所有可能的结果;
(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号