已知抛物线,点P(1,-1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0.
(I)求抛物线C的焦点坐标;
(II)若点M满足,求点M的轨迹方程.
在一个特定时段内, 以点 为中心的7海里以内海域被设为警戒水域.点 正北55海里处有一个 雷达观测站 .某时刻测得一艘匀速直线行驶的船只位于点 北偏东 且与点 相距 海里的位置 ,经过40分钟又测得该船已行驶到点 北偏东 (其中 )且与点 相距 海里的位置C.
(Ⅰ)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
(Ⅰ)
(II)
如图所示,四棱锥 的底面 是边长为 1 的菱形, , 是 的中点, 底面 .
(I) 证明: 平面 平面 ;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是 , 且面试是否合格互不影响.
求: ( I ) 至少有 1 人面试合格的概率;
( II ) 签约人数 的分布列和数学期望.
(1) 求 的值;
(2) 设 , 求证: