某公司按现有能力,每月收入为70万元,公司分析部门测算,若不进行改革,入世后因竞争加剧收入将逐月减少.分析测算得入世第一个月收入将减少3万元,以后逐月多减少2万元,如果进行改革,即投入技术改造300万元,且入世后每月再投入1万元进行员工培训,则测算得自入世后第一个月起累计收入与时间n(以月为单位)的关系为
=
,且入世第一个月时收入将为90万元,第二个月时累计收入为170万元,问入世后经过几个月,该公司改革后的累计纯收入高于不改革时的累计纯收入.
已知函数,
.
(Ⅰ)判定在
上的单调性;
(Ⅱ)求在
上的最小值;
(Ⅲ)若,
,求实数
的取值范围.
已知圆O:交
轴于A,B两点,曲线C是以
为长轴,离心率为
的椭圆,其左焦点为F.若P是圆O上一点连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
已知四边形满足
∥
,
,
是
的中点,将
沿着
翻折成
,使面
面
,
为
的中点.
(Ⅰ)求四棱的体积;(Ⅱ)证明:
∥面
;
(Ⅲ)求面与面
所成二面角的余弦值.
已知函数,
=
(
是自然对数的底)
(1)若函数是(1,+∞)上的增函数,求
的取值范围;
(2)若对任意的>0,都有
,求满足条件的最大整数
的值;
(3)证明:,
.
已知椭圆上的动点到焦点距离的最小值为
,以原点为圆心、椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(2,0)的直线与椭圆
相交于
两点,
为椭圆上一点, 且满足
(
为坐标原点),当
时,求实数
的值.