(本小题满分12分)
袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n的球重
克,这些球等可能地从袋里取出(不受重量、号码的影响)。
(1)如果任意取出1球,求其重量大于号码数的概率;
(2)如果不放回地任意取出2球,求它们重量相等的概率。
甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:
甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只。
乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个。
请你根据提供的信息说明:
(Ⅰ)第2年全县鱼池的个数及全县出产的鳗鱼总数。
(Ⅱ)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?说明理由。
(Ⅲ)哪一年的规模(即总产量)最大?说明理由。
已知数列
满足:
且
.
(Ⅰ)求
,
,
,
的值及数列
的通项公式;
(Ⅱ)设
,求数列
的前
项和
;
在四棱锥
中,
,
,
底面
,
,直线
与底面
成
角,点
分别是
的中点.
(1)求二面角
的大小;
(2)当
的值为多少时,
为直角三角形.
如图,已知正方体
的棱长为2,E、F分别是
、
的中点,过
、E、F作平面
交
于G..
(Ⅰ)求证:
∥
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)求正方体被平面
所截得的几何体
的体积.
已知数列
满足:
且
.
(Ⅰ)求
,
,
,
的值及数列
的通项公式;
(Ⅱ)设
,求数列
的前
项和
;