(本小题满分12分) 已知函数在
上是增函数,在
上为减函数.
(Ⅰ)求的表达式;
(Ⅱ)若当时,不等式
恒成立,求实数
的值;
(Ⅲ)是否存在实数使得关于
的方程
在区间[0,2]上恰好有两个相异的实根,若存在,求实数
的取值范围.
在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,
且PA=2AB
(1)求证:平面PAC⊥平面PBD;
(2)求二面角B—PC—D的余弦值.
(.如图所示,已知四棱锥P—ABCD,底面ABCD为菱形,PA⊥平面ABCD,
∠ABC=60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,
求二面角E—AF—C的余弦值.
(如图所示,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求BD与平面ADMN所成的角.
(在正四面体P—ABC中,D,E,F分别是AB、BC、 CA的中点,求证:
(1)BC∥平面PDF;(2)BC⊥平面PAE
(本题12分) 设函数.
(1) 求函数的单调区间;
(2) 若函数在区间(0,2)上单调递减,试求实数
的取值范围;
(3) 若函数的极小值大于0,试求实数
的取值范围.