在平面直角坐标系中,经过点
且斜率为
的直线
与椭圆
有两个不同的交点
。
(1)求实数的取值范围;
(2)设椭圆与轴正半轴,
轴正半轴的交点分别为
,是否存在常数
,使得向量
共线?如果存在,求
的值;如果不存在,请说明理由。
(理科)已知动圆C与圆相外切,与圆
相内切,设动圆圆心C的轨迹为T,且轨迹T与x轴右半轴的交点为A.
(Ⅰ)求轨迹T的方程;
(Ⅱ)已知直线l:y=kx+m与轨迹为T相交于M、N两点(M、N不在x轴上).若以MN为直径的圆过点A,求证:直线l过定点,并求出该定点的坐标.
(文科)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为
,且过点(3,﹣1).
(1)求椭圆C的方程;
(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PA=PN,再过P作直线l′⊥MN,证明:直线l′恒过定点,并求出该定点的坐标.
(理科)椭圆C:(a>b>0)的左、右焦点分别是F1、F2,离心率为
,过F1且垂直于x轴的直线被椭圆C截得的线段长为l.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点p作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.
(文科)已知椭圆:
离心率为
,且椭圆的长轴比焦距长
.
(1)求椭圆的方程;
(2)过点(
,
)的动直线
交椭圆
于
、
两点,试问:在坐标平面上是否存在一个定点
,使得无论
如何转动,以
为直径的圆恒过定点
?若存在,求出点
的坐标;若不存在,请说明理由.
(文科)已知点是椭圆
的左顶点,直线
与椭圆
相交于
两点,与
轴相交于点
.且当
时,△
的面积为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线,
与直线
分别交于
,
两点,试判断以
为直径的圆是否经过点
?并请说明理由.