已知a=3,c=2,B=150°,求边b的长及S△。
(本小题满分13分)(理科做)如图,在四棱锥P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥PD,异面直线PA和CD所成角等于60°.
(1)求证:面PCD⊥面PBD;
(2)求直线PC和平面PAD所成角的正弦值的大小;
(3)在棱PA上是否存在一点E,使得二面角A-BE-D的余弦值为?若存在,指出点E在棱PA上的位置,若不存在,说明理由.
(文科做)己知函数
(1)若在区间
上是增函数,求实数
的取值范围;
(2)若是
的极值点,求
在
上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数的图象与函数
的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由
已知曲线C:
(1)当为何值时,曲线C表示圆;
(2)在(1)的条件下,若曲线C与直线交于M、N两点,且
,求
的值.
(3)在(1)的条件下,设直线与圆
交于
,
两点,是否存在实数
,使得以
为直径的圆过原点,若存在,求出实数
的值;若不存在,请说明理由.
如图,在四棱锥中,底面
是正方形,侧面
底面
,
,
,
是
的中点.
(1)求证:平面
;
(2)若于
,求证:
平面
;
(3)若,求三棱锥
的体积.
如图,在平面直角坐标系中,已知平行四边形的三个顶点坐标:
.
(1)求边所在直线的方程(结果写成一般式);
(2)证明平行四边形为矩形,并求其面积.
(本小题满分10分)
某批次的某种灯泡共200个,对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.
寿命(天) |
频数 |
频率 |
![]() |
10 |
![]() |
![]() |
30 |
![]() |
![]() |
70 |
![]() |
![]() |
![]() |
![]() |
![]() |
60 |
![]() |
合计 |
200 |
![]() |
(Ⅰ)根据频率分布表中的数据,写出a,b,c的值;
(Ⅱ)某人从这200个灯泡中随机地购买了1个,求此灯泡恰好不是次品的概率;