设椭圆 C : x 2 a 2 + y 2 b 2 = 1 a > b > 0 其相应于焦点 F 2 , 0 的准线方程为 x = 4 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)已知过点 F 1 = - 2 , 0 倾斜角为 θ 的直线交椭圆 C 于 A , B 两点,求证: A B = 4 2 2 - cos 2 θ ; (Ⅲ)过点 F 1 - 2 , 0 作两条互相垂直的直线分别交椭圆 C 于 A , B 和 D , E ,求 A B + D E 的最小值
已知集合A={x|-2≤x≤5},B={x|m≤x≤2m-1} A∩B="B," 求m的取值范围。
设a,b∈R,集合{1,a+b,a}=,求b2010-a2011的值
(本小题满分12分)已知函数-. (Ⅰ)证明是奇函数; (Ⅱ)判断的单调性,并用定义证明; (Ⅲ)求在[-1,2] 上的最值.
(本小题满分12分)如图,棱长为1的正方体ABCD-A1B1C1D1中, (Ⅰ)求证:AC⊥平面B1D1DB; (Ⅱ)求证:BD1⊥平面ACB1; (Ⅲ)求三棱锥B-ACB1体积.
(本小题满分12分)已知函数 (Ⅰ)求函数的定义域; (Ⅱ)求函数的零点; (Ⅲ)若函数的最小值为-4,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号