已知,
,
为
的三边,求证:
.
(本小题满分14分)
在平面上有一系列的点
, 对于正整数
,点
位于函数
的图像上,以点
为圆心的
与
轴相切,且
与
又彼此外切,若
,且
(1)求证:数列是等差数列;
(2)设的面积为
,
求证:
(本小题满分14分)
已知,
,
.
(1)当时,求
的单调区间;
(2)求在点
处的切线与直线
及曲线
所围成的封闭图形的面积;
(3)是否存在实数,使
的极大值为3?若存在,求出
的值;若不存在,请说明理由.
(本小题满分14分)
已知ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,
PA⊥平面ABCD.
(1)求证:PF⊥FD;
(2)设点G在PA上,且EG//平面PFD,试确定点G的位置.
(本小题满分12分)
四个大小相同的小球分别标有数字把它们放在一个盒子中,从中任意摸出两个小球,它们的标号分别为
、
,记随机变量
.
(1)求随机变量时的概率;
(2)求随机变量的概率分布列及数学期望。
(本小题满分12分)
已知向量与
,其中
(1)若,求
和
的值;
(2)若,求
的值域。