已知不等式x2–3x+t<0的解集为{x|1<x<m, mÎR}
(1)求t, m的值;
(2)若f(x)= –x2+ax+4在(–∞,1)上递增,求不等式log a (–mx2+3x+2–t)<0的解集。
(本题12分)已知函数
(1)若曲线在x=1处的切线方程为
,求实数a的值;
(2)若的值域为
,求a的值;
(本题12分)设有关于的一元二次方程
.
(1)若是从0,1,2,3四个数中任取的一个数,
是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(2)若是从区间
任取的一个数,
是从区间
任取的一个数,求上述方程有实根的概率.
(本题12分)椭圆C:的两个焦点为F1,F2,点P在椭圆C上,且
(1)求椭圆C的方程;
(2)若直线l过圆x2+y2+4x-2y=0的圆心M,交椭圆C于两点,且A
、B关于点M对称,求直线l的方程.
(本题10分)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
(本小题满分12分) 过圆上一点A(4,6)作圆的一条动弦AB,点P为弦AB的中点.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点P关于的对称点为E,关于
的对称点为F,求|EF|的取值范围.