如图,已知正三棱柱的所有棱长都是
,
分别是
,
的中点
(1)求证∥平面
(2)求证
平面
(本小题满分12分)已知函数>0,
>0,
<
的图象与
轴的交点为(0,1),它在
轴右侧的第一个最高点和第一个最低点的坐标分别为
和
(1)写出的解析式及
的值;(2)若锐角
满足
,求
的值.
![]() |
(本小题满分14分)
无穷数列的前n项和
,并且
≠
.
(1)求p的值;
(2)求的通项公式;
(3)作函数,如果
,证明:
.
(本小题满分13分)
已知圆的圆心为
,一动圆与这两圆都外切。
(1)求动圆圆心的轨迹方程;
(2)若过点的直线
与(1)中所求轨迹有两个交点
、
,求
的取值范
围.
(本小题满分12分)
已知函数
(1)讨论当a > 0时,函数的单调性;
(2)若曲线上两点A、B处的切线都与y轴垂直,且线段AB与x轴有
公共点,求实数a的取值范围.
(本小题满分12分)
某批产品成箱包装,每箱4件,一用户在购进该批产品前先取出2箱,再从每箱中任意抽取2件产品进行检验,设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.
(1)求恰有一件抽检的6件产品中二等品的概率;
(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率.