某日用品按行业质量标准分成五个等级,等级系数X依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
X |
1 |
2 |
3 |
4 |
5 |
f |
a |
0.2 |
0.45 |
b |
c |
(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;
(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.
如图,直三棱柱中,
,
是棱
的中点,
(1)证明:
(2)求二面角的大小. (12分)
已知棱长为a的正方体ABCD—A1B1C1D1,E为BC中点.
(1)求B到平面B1ED距离
(2)求直线DC和平面B1ED所成角的正弦值. (12分)
已知命题p: 方程有两个大于-1的实数根,已知命题q:关于x的不等式
的解集是R,若“p或q”与“
” 同时为真命题,求实数a的取值范围(12分)
已知双曲线的中心在原点,焦点在坐标轴上,离心率为
,且过点(4,-
)(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:
.(3)若点A,B在双曲线上,点N(3,1)恰好是AB的中点,求直线AB的方程(12分)
已知平行六面体ABCD—A1B1C1D1中,以顶点 A为端点的三条棱长都等于1,两两夹角都是60°,求对角线AC1的长度. (10分)