已知,
,
,求
的最大值
(本小题满分12分)甲、乙等五名环保志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)设随机变量为这五名志愿者中参加
岗位服务的人数,求
的分布列.
(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.
(1) 求证:CE∥平面PAB;
(2) 求PA与平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.
(本小题满分12分) 设函数f(x)=,其中向量
,
.
(1)求f( )的值及f( x)的最大值。
(2)求函数f( x)的单调递增区间.
设曲线:
上的点
到点
的距离的最小值为
,若
,
,
(1)求数列的通项公式;
(2)求证:;
(3)是否存在常数,使得对
,都有不等式:
成立?请说明理由.
已知函数,
R.
(1)求函数的单调区间;
(2)是否存在实数,使得函数
的极值大于
?若存在,求
的取值范围;若不存
在,说明理由.