游客
题文

  如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F。
  (I)证明平面
  (II)证明平面EFD;
  (III)求二面角的大小。

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知都是实数,且
(1)求不等式的解集;
(2)若对满足条件的所有实数都成立,求实数的取值范围.

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:


喜爱打篮球
不喜爱打篮球
合计
男生

5

女生
10


合计


50


已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为
(1)请将上表补充完整(不用写计算过程);
(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828


(参考公式:,其中)

已知
(1)求函数的最小值;
(2)对一切恒成立,求实数的取值范围;
(3)证明:对一切,都有成立.

函数的图象记为E.过点作曲线E的切线,这样的切线有且仅有两条,求的值.

为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:(为常数),若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小?并求出最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号