游客
题文

(本小题14分)设,  
(1)当时,求曲线处的切线方程;
(2)如果存在,使得成立,
求满足上述条件的最大整数
(3)如果对任意的,都有成立,求实数的取值范围.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

是以为焦点的抛物线是以直线为渐近线,以为一个焦点的双曲线.

(1)求双曲线的标准方程;
(2)若在第一象限内有两个公共点,求的取值范围,并求的最大值;(3)若的面积满足,求的值.

(理)设数列为正项数列,其前项和为,且有,成等差数列.(1)求通项;(2)设的最大值.
(文)数列满足,且.(1)求通项;(2)记,数列的前项和为,求.

如图所示,在长方体中,为棱上一点.

(1)若,求异面直线所成角的正切值;
(2)是否存在这样的点使得平面?若存在,求出的长;若不存在,请说明理由.

(理)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(Ⅰ)求红队至少两名队员获胜的概率;
(Ⅱ)用表示红队队员获胜的总盘数,求的分布列和数学期望.

已知向量,设函数
(1)若,f(x)=,求的值;
(2)在△ABC中,角A,B,C的对边分别是,且满足,求f(B)的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号