如图,在四棱锥中,底面
是正方形,其他四个侧面都是等边三角形,
与
的交点为O.
(Ⅰ)求证:平面
;
(Ⅱ)已知为侧棱
上一个动点. 试问对于
上任意一点
,平面
与平面
是否垂直?若垂直,请加以证明;若不垂直,请
说明理由.
【2015高考重庆,文17】随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份 |
2010 |
2011 |
2012 |
2013 |
2014 |
时间代号![]() |
1 |
2 |
3 |
4 |
5 |
储蓄存款![]() |
5 |
6 |
7 |
8 |
10 |
(Ⅰ)求y关于t的回归方程
(Ⅱ)用所求回归方程预测该地区2015年()的人民币储蓄存款.
附:回归方程中
【2015高考新课标1,文19】(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.
![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
46.6 |
56.3 |
6.8 |
289.8 |
1.6 |
1469 |
108.8 |
表中=
,
=
(Ⅰ)根据散点图判断,与
,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x,y的关系为,根据(Ⅱ)的结果回答下列问题:
(ⅰ)当年宣传费时,年销售量及年利润的预报值时多少?
(ⅱ)当年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,
,……,
,其回归线
的斜率和截距的最小二乘估计分别为:
,
【2015高考天津,文15】(本小题满分13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.
(Ⅰ)求应从这三个协会中分别抽取的运动员人数;
(Ⅱ)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.
(ⅰ)用所给编号列出所有可能的结果;
(ⅱ)设A为事件“编号为的两名运动员至少有一人被抽到”,求事件A发生的概率.
【2015高考四川,文17】一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.
(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)
乘客 |
P1 |
P2 |
P3 |
P4 |
P5 |
座位号 |
3 |
2 |
1 |
4 |
5 |
3 |
2 |
4 |
5 |
1 |
|
(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.
【2015高考陕西,文19】随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
日期 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
天气 |
晴 |
雨 |
阴 |
阴 |
阴 |
雨 |
阴 |
晴 |
晴 |
晴 |
阴 |
晴 |
晴 |
晴 |
晴 |
日期 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
天气 |
晴 |
阴 |
雨 |
阴 |
阴 |
晴 |
阴 |
晴 |
晴 |
晴 |
阴 |
晴 |
晴 |
晴 |
雨 |
(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;
(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率.