已知是递增数列,其前
项和为
,
,
且
,
.
(Ⅰ)求数列的通项
;
(Ⅱ)是否存在,使得
成立?若存在,写出一组符合条件的
的值;若不存在,请说明理由;
(Ⅲ)设,若对于任意的
,不等式
恒成立,求正整数
的最大值.
本题满分12分)
已知函数的图象的一部分如下图所示.
(I)求函数的解析式;
(II)求函数的最大值与最小值.
(《坐标系与参数方程选讲》选做题).已知直线的极坐标方程
为,则点
到这条直线的距离
为▲.
(《几何证明选讲》选做题).如图:直角三角形ABC中,∠B=90 o,AB=4,以BC为直径的圆交边AC于点D,AD=2,则∠C的大小为▲
(本小题满分14分)
已知函数.
(I)当时,求函数
的单调区间;
(II)若函数的图象在点
处的切线的倾斜角为45o,问:m在什么范围取值时,对于任意的
,函数
在区间
上总存在极值?
(本小题满分14分)
设椭圆C:的左、右焦点分别为F1、F2,A是椭圆C上的一点,
,坐标原点O到直线AF1的距离为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设Q是椭圆C上的一点,过点Q的直线l 交 x轴于点,交 y轴于点M,若
,求直线l 的斜率.