(本小题满分14分)
已知动圆过定点
,且与定直线
相切,动圆圆心
的轨迹为
,直线
过点
交曲线
于
两点.
(Ⅰ)求曲线的方程;
(Ⅱ)若交
轴于点
,且
,求
的方程;
(Ⅲ)若的倾斜角为
,在
上是否存在点
使
为正三角形? 若能,求点
的坐标;若不能,说明理由.
如图,菱形的边长为
,
,
.将菱形
沿对角线
折起,得到三棱锥
,点
是棱
的中点,
.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面平面
;
(Ⅲ)求三棱锥的体积
已知函数.
(Ⅰ)求函数的定义域;
(Ⅱ)若,求
的值
已知函数,其中
为自然对数的底数.
(Ⅰ)当时,求曲线
在
处的切线与坐标轴围成的面积;
(Ⅱ)若函数存在一个极大值点和一个极小值点,且极大值与极小值的积为
,求
的值.
甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.
(Ⅰ)求选出的4名选手均为男选手的概率.
(Ⅱ)记为选出的4名选手中女选手的人数,求
的分布列和期望.
若为集合
且
的子集,且满足两个条件:
①;
②对任意的,至少存在一个
,使
或
.
![]() |
![]() |
… |
![]() |
![]() |
![]() |
… |
![]() |
… |
… |
… |
… |
![]() |
![]() |
… |
![]() |
则称集合组具有性质
.
如图,作行
列数表,定义数表中的第
行第
列的数为
.
(Ⅰ)当时,判断下列两个集合组是否具有性质
,如果是请画出所对应的表格,如果不是请说明理由;
集合组1:;
集合组2:.
(Ⅱ)当时,若集合组
具有性质
,请先画出所对应的
行3列的一个数表,再依此表格分别写出集合
;
(Ⅲ)当时,集合组
是具有性质
且所含集合个数最小的集合组,求
的值及
的最小值.(其中
表示集合
所含元素的个数)