游客
题文

(本小题满分12分)
F是椭圆C的左焦点,直线l为其左准线,直线lx轴交于点P,线段MN为椭圆的长轴,已知
(1)   求椭圆C的标准方程;
(2)   若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN
(3)   求三角形ABF面积的最大值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图(1)在直角梯形中,=2,分别是的中点,现将沿折起,使平面平面(如图2).
(Ⅰ)求二面角的大小;
(Ⅱ)在线段上确定一点,使平面,并给出证明过程.

袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字.
(Ⅰ)取出的3个小球上的数字互不相同的概率;
(Ⅱ)随机变量的概率分布和数学期望;
(Ⅲ)计分介于20分到40分之间的概率.

中,角所对的边分别为,且满足
(Ⅰ)求的面积;
(Ⅱ)若,求的值.

已知动圆P过点且与直线相切.
(Ⅰ) 求动圆圆心P的轨迹E的方程;
(Ⅱ) 设直线与轨迹E交于点A、BM是线段AB的中点,过M轴的垂线交轨迹EN
① 证明:轨迹EN处的切线AB平行;
② 是否存在实数,使?若存在,求的值;若不存在,说明理由.

设函数
(Ⅰ) 对于任意实数,求证:
(Ⅱ) 若方程有且仅有一个实根,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号