(本小题满分12分)
设F是椭圆C:的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知
.
(1) 求椭圆C的标准方程;
(2) 若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN;
(3) 求三角形ABF面积的最大值.
函数的部分图像如图所示,
(Ⅰ)求出函数的解析式;
(Ⅱ)若,求
的值。
已知函数的图像过原点,且在
处的切线为直线
(Ⅰ)求函数的解析式;
(Ⅱ)求函数在区间
上的最小值和最大值.
已知.
(1)若恒成立,求
的最大值;
(2)若为常数,且
,记
,求
的最小值.
(如图1)在平面四边形中,
为
中点,
,
,且
,现沿
折起使
,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线
所成角为
?若存在,求出线段的长;若不存在,请说明理由.
已知函数(
均为正常数),设函数
在
处有极值.
(1)若对任意的,不等式
总成立,求实数
的取值范围;
(2)若函数在区间
上单调递增,求实数
的取值范围.