如图,为了计算某湖岸边两景点B与C的距离,由于地形的限制,需要在岸上A和D两个测量点,现测得,AD="10km,AB=14km,"
,
,求两景点B与C之间的距离(假设A、B、C、D在同一平面内,测量结果精确到0.1km,参考数据:
)
中,
分别是角
的对边,
,
,且
(1)求角的大小;
(2)设,且
的最小正周期为
,求
在
上的最大值和最小值,及相应的
的值。
在等差数列中,
为前n项和,且满足
(1)求及数列
的通项公式;
(2)记,求数列
的前n项和
如图,甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于
处时,乙船位于甲船的北偏西
的方向
处,此时两船相距20海里.当甲船航行20分钟到达
处时,乙船航行到甲船的北偏西
方向的
处,此时两船相距
海里,问乙船每小时航行多少海里?
已知函数,其中
.
(Ⅰ)当=1时,求
在(1,
)的切线方程
(Ⅱ)当时,
,求实数
的取值范围。
若直线过双曲线
的一个焦点,且与双曲线的一条渐近线平行.
(Ⅰ)求双曲线的方程;
(Ⅱ)若过点与
轴不平行的直线与双曲线相交于不同的两点
的垂直平分线为
,求直线
在
轴上截距的取值范围.