数列的各项均为正数,
为其前
项和,对于任意
,总有
成等差数列.
(1)求数列的通项公式;
(2)设数列的前
项和为
,且
,求证:对任意实数
是常数,
和任意正整数
,总有
(3)正数数列中,
求数列
中的最大项.
某食品企业一个月内被消费者投诉的次数用表示,椐统计,随机变量
的概率分布如下:
![]() |
0 |
1 |
2 |
3 |
p |
0.1 |
0.3 |
2a |
a |
(1)求a的值和的数学期望;
(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.
已知.
(1)求的值;
(2)若是第三象限的角,化简三角式
,并求值.
(本小题满分14分)已知函数.
(l)求的单调区间和极值;
(2)若对任意恒成立,求实数m的最大值.
在△ABC中,a、b、c分别为内角A、B、C的对边,且.
(1)求A的大小;
(2)若,试求△ABC的面积.
已知数列是等比数列,首项
.
(l)求数列的通项公式;
(2)设数列,证明数列
是等差数列并求前n项和
.