已知函数的图象在点
处的切线与直线
平行.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数在区间
上的最小值和最大值.
已知点分别是射线
,
上的动点,
为坐标原点,且
的面积为定值2.
(I)求线段中点
的轨迹
的方程;
(II)过点作直线
,与曲线
交于不同的两点
,与射线
分别交于点
,若点
恰为线段
的两个三等分点,求此时直线
的方程.
已知双曲线的一条渐近线方程为
,两条准线的距离为l.
(1)求双曲线的方程;
(2)直线l过坐标原点O且和双曲线交于两点M、N,点P为双曲线上异于M、N的一点,且直线PM,PN的斜率均存在,求kPM·kPN的值.
已知定圆圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.
(I)求曲线C的方程;
(II)若点为曲线C上一点,求证:直线
与曲线C有且只有一个交点.
已知抛物线,点P(1,-1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0.
(I)求抛物线C的焦点坐标;
(II)若点M满足,求点M的轨迹方程.
已知椭圆W的中心在原点,焦点在轴上,离心率为
,两条准线间的距离为6. 椭圆W的左焦点为
,过左准线与
轴的交点
任作一条斜率不为零的直线
与椭圆W交于不同的两点
、
,点
关于
轴的对称点为
.
(Ⅰ)求椭圆W的方程;
(Ⅱ)求证:(
);
(Ⅲ)求面积
的最大值.