游客
题文

已知函数的图象在点处的切线与直线平行.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数在区间上的最小值和最大值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知点分别是射线上的动点,为坐标原点,且的面积为定值2.
(I)求线段中点的轨迹的方程;
(II)过点作直线,与曲线交于不同的两点,与射线分别交于点,若点恰为线段的两个三等分点,求此时直线的方程.

已知双曲线的一条渐近线方程为,两条准线的距离为l.
(1)求双曲线的方程;
(2)直线l过坐标原点O且和双曲线交于两点MN,点P为双曲线上异于MN的一点,且直线PMPN的斜率均存在,求kPM·kPN的值.

已知定圆圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.
(I)求曲线C的方程;
(II)若点为曲线C上一点,求证:直线与曲线C有且只有一个交点.

已知抛物线,点P(1,-1)在抛物线C上,过点P作斜率为k1k2的两条直线,分别交抛物线C于异于点P的两点Ax1,y1),Bx2,y2),且满足k1+k2=0.
(I)求抛物线C的焦点坐标;
(II)若点M满足,求点M的轨迹方程.

已知椭圆W的中心在原点,焦点在轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点,点关于轴的对称点为.
(Ⅰ)求椭圆W的方程;
(Ⅱ)求证:();
(Ⅲ)求面积的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号