(本题10分)
(1)化简;
(2),(1)求
的值。
袋中装有若干个质地均匀大小一致的红球和白球,白球数量是红球数量的两倍.每次从袋中摸出一个球然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直至第5次摸球后结束.
(1)求摸球3次就停止的事件发生的概率;
(2)记摸到红球的次数为,求随机变量
的分布列及其期望.
已知函数,其定义域为
,最大值为6.
(1)求常数m的值;
(2)求函数的单调递增区间.
已知函数.
(1)试判断函数的单调性;
(2)设,求
在
上的最大值;
(3)试证明:对任意,不等式
都成立(其中
是自然对数的底数).
如图,已知椭圆的左、右焦点分别
为,其上顶点为
已知
是边长为
的正三角形.
(1)求椭圆的方程;
(2)过点任作一动直线
交椭圆
于
两点,记
.若在线段
上取一点
,使得
,当直线
运动时,点
在某一定直线上运动,求出该定直线的方程.
空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,解代表空气污染越严重:
PM2.5日均浓度 |
0~35 |
35~75 |
75~115 |
115~150 |
150~250 |
>250 |
空气质量级别 |
一级 |
二级 |
三级 |
四级 |
五级 |
六级 |
空气质量类别 |
优 |
良 |
轻度污染 |
中度污染 |
重度污染 |
严重污染 |
某市2013年3月8日—4月7日(30天)对空气质量指数PM2.5进行检测,获得数据后整理得到如下条形图:
(1)估计该城市一个月内空气质量类别为良的概率;
(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.