(本小题满分12分)某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产得灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下:
(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;
(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率。(视频率为概率)
(本小题满分 14 分)设数列的首项
,且
,
,
.
(Ⅰ)证明:是等比数列;
(Ⅱ)若,数列
中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由.
(Ⅲ)若是递增数列,求
的取值范围.
(本小题满分13分)已知函数(
、
为常数).
(Ⅰ)若,解不等式
;
(Ⅱ)若,当
时,
恒成立,求
的取值范围.
(本小题满分12分)已知函数,(
).
(Ⅰ)求函数的递增区间;
(Ⅱ)若函数在
上有两个不同的零点
、
,求
的值.
(本小题满分12分)已知中的三个内角
所对的边分别为
,且满足
,
.
(Ⅰ)求的值;
(Ⅱ)求的面积.