对函数 ,若存在
且
,使得
(其中 A, B为常数),则称
为"可分解函数"。
(1)试判断 是否为"可分解函数",若是,求出 A, B的值;若不是,说明理由;
(2)用反证法证明: 不是"可分解函数";
(3)若 是"可分解函数",则求 a的取值范围,并写出 A, B关于 a的相应的表达式。
设数列满足
,
.
(1)求数列的通项公式;
(2)设,求数列
的前
项和
.
如图,在三棱锥中,
,
,
为
的中点,
为
的中点,且
为正三角形.
(1)求证:平面
;
(2)若,
,求点
到平面
的距离.
某单位名员工参加“社区低碳你我他”活动.他们的年龄在
岁至
岁
之间.按年龄分组:第1组,第
组
,第3组
,第
组
,第
组
,得到的频率分布直方图如图所示.下表是年龄的频率分布表.
区间 |
![]() |
![]() |
![]() |
![]() |
![]() |
人数 |
![]() |
![]() |
![]() |
(1)求正整数、
、
的值;
(2)现要从年龄较小的第、
、
组中用分层抽样的方法抽取
人,则年龄在第
、
、
组的人数分别
是多少?
(3)在(2)的条件下,从这人中随机抽取
人参加社区宣传交流活动,求恰有
人在第
组的概率.
在△中,角
、
、
所对的边分别为
、
、
,且
.
(1)求的值;
(2)若,
,求
的值.
如图,已知椭圆的方程为
,双曲线
的两条渐近线为
、
.过椭圆
的右焦点
作直线
,使
,又
与
交于点
,设
与椭圆
的两个交点由上至下依次为
、
.
(1)若与
的夹角为
,且双曲线的焦距为
,求椭圆
的方程;
(2)求的最大值.