游客
题文

(本小题满分12分) 如图,在三棱锥A-BCD中,侧面ABD、 ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形.

(1)      求证:AD^BC;
(2)      求二面角B-AC-D的大小;
(3)      在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由 

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,直线l的参数方程是(为参数).
(1)求曲线的直角坐标方程;
(2)设直线l与曲线交于两点,点的直角坐标为(2,1),若,求直线l的普通方程.

二阶矩阵A,B对应的变换对圆的区域作用结果如图所示.

(1)请写出一个满足条件的矩阵A,B;
(2)利用(1)的结果,计算C=BA,并求出曲线在矩阵C对应的变换作用下的曲线方程.

已知函数(其中),为f(x)的导函数.
(1)求证:曲线y=在点(1,)处的切线不过点(2,0);
(2)若在区间中存在,使得,求的取值范围;
(3)若,试证明:对任意恒成立.

已知椭圆C:( )的离心率为,点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)若椭圆C的两条切线交于点M(4,),其中,切点分别是A、B,试利用结论:在椭圆上的点()处的椭圆切线方程是,证明直线AB恒过椭圆的右焦点
(3)试探究的值是否恒为常数,若是,求出此常数;若不是,请说明理由.

如图长方体中,底面ABCD是边长为1的正方形,E为延长线上的一点且满足.
(1)求证:平面
(2)当为何值时,二面角的大小为.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号