四棱锥的底面
是正方形,侧棱
⊥底面
,
,
是
的中点.
(1)证明//平面
;
(2)求二面角的平面角的余弦值;
(3)在棱上是否存在点
,使
⊥平面
?
若存在,请求出点的位置;若不存在,请说明理由.
已知函数.
(Ⅰ)解不等式: ;
(Ⅱ)当时, 不等式
恒成立,求实数a的取值范围.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线,已知过点
的直线的参数方程为:
(t为参数),直线与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线的普通方程;
(Ⅱ)若成等比数列,求a的值.
已知在中,D是AB上一点,
的外接圆交BC于E,
.
(Ⅰ)求证:;
(Ⅱ)若CD平分,且
,求BD的长.
已知,
(Ⅰ)当时,若
在
上为减函数,
在
上是增函数,求
值;
(Ⅱ)对任意恒成立,求
的取值范围.
椭圆过点
,离心率为
,左、右焦点分别为
,过
的直线交椭圆于
两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)当的面积为
时,求直线的方程.